If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+196=400
We move all terms to the left:
a^2+196-(400)=0
We add all the numbers together, and all the variables
a^2-204=0
a = 1; b = 0; c = -204;
Δ = b2-4ac
Δ = 02-4·1·(-204)
Δ = 816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{816}=\sqrt{16*51}=\sqrt{16}*\sqrt{51}=4\sqrt{51}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{51}}{2*1}=\frac{0-4\sqrt{51}}{2} =-\frac{4\sqrt{51}}{2} =-2\sqrt{51} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{51}}{2*1}=\frac{0+4\sqrt{51}}{2} =\frac{4\sqrt{51}}{2} =2\sqrt{51} $
| -x/5+10=20 | | -5(5c-6)+7=137 | | 3u+46=-2(u+2) | | 5a-20=11a | | 16-3r=4r-5 | | a^2+14^2=20^2 | | -7y+5(y-8)=-26 | | 5x17=2x-25 | | 11t=t+2 | | 8(3x−7)=−6(x+7)+4 | | 30+.6x=55+.35x | | 8k-21=k | | f/3+13=16 | | 6+4t=26 | | -4y=3y+14 | | -42+8x=-106 | | 2x-2=188 | | 5x−2(x−4)=17 | | 8x+2x-4=20 | | q/3+13=16 | | 5y=16−3y | | 7w+7=19w-3w | | 10=g+17/4 | | 7w+7=91w-3w+61 | | 6(u+2)=8u-4 | | 2x^2-18=8x | | 6=j-76/2 | | 5b-122=43 | | 1/2(2x-6)-6=-6 | | s/4-6=1 | | 12-2r=6 | | 6-x=5x+3- |